Popular Matchings in the Stable Marriage Problem

نویسندگان

  • Chien-Chung Huang
  • Telikepalli Kavitha
چکیده

The input is a bipartite graph G = (A ∪B ,E) where each vertex u ∈ A ∪B ranks its neighbors in a strict order of preference. This is the same as an instance of the stable marriage problem with incomplete lists. A matching M∗ is said to be popular if there is no matching M such that more vertices are better off in M than in M∗. Any stable matching of G is popular, however such a matching is a minimum cardinality popular matching. We consider the problem of computing a maximum cardinality popular matching in G. It has very recently been shown that when preference lists have ties, the problem of determining if a given instance admits a popular matching or not is NP-complete. When preference lists are strict, popular matchings always exist, however the complexity of computing a maximum cardinality popular matching was unknown. In this paper we give a simple characterization of popular matchings when preference lists are strict and a sufficient condition for a maximum cardinality popular matching. We then show an O(mn0) algorithm for computing a maximum cardinality popular matching, where m = |E| and n0 = min(|A |, |B |).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum cardinality popular matchings in the stable marriage problem

Popular matching and was extensively studied in recent years as an alternative to stable matchings. Both type of matchings are defined in the framework of Stable Marriage (SM) problem: in a given bipartite graph G = (A,B;E) each vertex u has a strict order of preference on its neighborhood. A matching M is popular, if for every matching M ′ of G, the number of vertices that prefer M ′ to M is a...

متن کامل

Two-sided popular matchings in bipartite graphs with forbidden/forced elements and weights

Two-sided popular matchings in bipartite graphs are a well-known generalization of stable matchings in the marriage setting, and they are especially relevant when preference lists are incomplete. In this case, the cardinality of a stable matching can be as small as half the size of a maximum matching. Popular matchings allow for assignments of larger size while still guaranteeing a certain fair...

متن کامل

Popular Half-Integral Matchings

In an instance G = (A∪B,E) of the stable marriage problem with strict and possibly incomplete preference lists, a matchingM is popular if there is no matchingM ′ where the vertices that prefer M ′ to M outnumber those that prefer M to M ′. All stable matchings are popular and there is a simple linear time algorithm to compute a maximum-size popular matching. More generally, what we seek is a mi...

متن کامل

The Popular Roommates problem

We consider the popular matching problem in a roommates instance G = (V,E) with strict preference lists. While popular matchings always exist in a bipartite instance, they need not exist in a roommates instance. The complexity of the popular matching problem in a roommates instance has been an open problem for several years and here we show it is NP-hard. A sub-class of max-size popular matchin...

متن کامل

Popularity in the Generalized Hospital Residents Setting

We consider the problem of computing popular matchings in a bipartite graph G = (R ∪ H, E) where R and H denote a set of residents and a set of hospitals respectively. Each hospital h has a positive capacity denoting the number of residents that can be matched to h. The residents and the hospitals specify strict preferences over each other. This is the well-studied Hospital Residents (HR) probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Comput.

دوره 222  شماره 

صفحات  -

تاریخ انتشار 2011